Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054693

RESUMO

The outer Solar System object (486958) Arrokoth (provisional designation 2014 MU69) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules. Water ice was not detected. This composition indicates hydrogenation of carbon monoxide-rich ice and/or energetic processing of methane condensed on water ice grains in the cold, outer edge of the early Solar System. There are only small regional variations in color and spectra across the surface, which suggests that Arrokoth formed from a homogeneous or well-mixed reservoir of solids. Microwave thermal emission from the winter night side is consistent with a mean brightness temperature of 29 ± 5 kelvin.

2.
Astrobiology ; 19(7): 831-848, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30907634

RESUMO

We present the case for the presence of complex organic molecules, such as amino acids and nucleobases, formed by abiotic processes on the surface and in near-subsurface regions of Pluto. Pluto's surface is tinted with a range of non-ice substances with colors ranging from light yellow to red to dark brown; the colors match those of laboratory organic residues called tholins. Tholins are broadly characterized as complex, macromolecular organic solids consisting of a network of aromatic structures connected by aliphatic bridging units (e.g., Imanaka et al., 2004; Materese et al., 2014, 2015). The synthesis of tholins in planetary atmospheres and in surface ices has been explored in numerous laboratory experiments, and both gas- and solid-phase varieties are found on Pluto. A third variety of tholins, exposed at a site of tectonic surface fracturing called Virgil Fossae, appears to have come from a reservoir in the subsurface. Eruptions of tholin-laden liquid H2O from a subsurface aqueous repository appear to have covered portions of Virgil Fossae and its surroundings with a uniquely colored deposit (D.P. Cruikshank, personal communication) that is geographically correlated with an exposure of H2O ice that includes spectroscopically detected NH3 (C.M. Dalle Ore, personal communication). The subsurface organic material could have been derived from presolar or solar nebula processes, or might have formed in situ. Photolysis and radiolysis of a mixture of ices relevant to Pluto's surface composition (N2, CH4, CO) have produced strongly colored, complex organics with a significant aromatic content having a high degree of nitrogen substitution similar to the aromatic heterocycles pyrimidine and purine (Materese et al., 2014, 2015; Cruikshank et al., 2016). Experiments with pyrimidines and purines frozen in H2O-NH3 ice resulted in the formation of numerous nucleobases, including the biologically relevant guanine, cytosine, adenine, uracil, and thymine (Materese et al., 2017). The red material associated with the H2O ice may contain nucleobases resulting from energetic processing on Pluto's surface or in the interior. Some other Kuiper Belt objects also exhibit red colors similar to those found on Pluto and may therefore carry similar inventories of complex organic materials. The widespread and ubiquitous nature of similarly complex organic materials observed in a variety of astronomical settings drives the need for additional laboratory and modeling efforts to explain the origin and evolution of organic molecules. Pluto observations reveal complex organics on a small body that remains close to its place of origin in the outermost regions of the Solar System.


Assuntos
Atmosfera/análise , Meio Ambiente Extraterreno/química , Plutão , Purinas/análise , Pirimidinas/análise , Atmosfera/química , Gelo , Metano/análise , Espectrofotometria Infravermelho , Compostos Orgânicos Voláteis/análise , Água/química
3.
Astrophys J ; 534(2 Pt 1): 801-8, 2000 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11543516

RESUMO

We have investigated the effects induced by ion bombardment of mixtures containing nitrogen-bearing compounds at low temperatures. The results show the formation of a band at 2080 cm-1 in binary mixtures, NH3:CH4 and N2:CH4, which we attribute to HCN embedded in the organic residue formed by ion irradiation. In addition to this band, ternary mixtures containing an oxygen-bearing species (i.e., H2O) form a compound with a prominent absorption band at about 2165 cm-1 (4.62 microns). We ascribe this band to a nitrile compound containing O that is bonded to the organic residue. A detailed comparison of the laboratory results with astronomical data of the 4.62 microns absorption band in protostellar spectra shows good agreement in peak position and profile. Our experimental studies show that N2, which is a more likely interstellar ice component than NH3, can be the molecular progenitor of the carrier of the interstellar band. This is an alternative to the pathway by which UV photolysis of NH3-containing ices produces the 4.62 microns band and implies that ion bombardment may well play an important role in the evolution of interstellar ices. Here, we discuss the implications of our studies for the chemical route by which the carrier of the 4.62 microns band is formed in these laboratory experiments.


Assuntos
Amônia/química , Gelo/análise , Íons , Metano/química , Nitrogênio/química , Amônia/efeitos da radiação , Argônio , Fenômenos Astronômicos , Astronomia , Monóxido de Carbono/química , Monóxido de Carbono/efeitos da radiação , Exobiologia , Meio Ambiente Extraterreno , Hélio , Cianeto de Hidrogênio/síntese química , Cianeto de Hidrogênio/química , Metano/efeitos da radiação , Nitrilas/síntese química , Nitrilas/química , Nitrogênio/efeitos da radiação , Compostos de Nitrogênio/química , Compostos de Nitrogênio/efeitos da radiação , Espectrofotometria Infravermelho
4.
Astrophys J ; 513(1 Pt 1): 294-304, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11542934

RESUMO

We present new 4.5-5.1 micron (2210-1970 cm-1) spectra of embedded protostars, W33 A, AFGL 961 E, AFGL 2136, NGC 7538 IRS 9, and Mon R2 IRS 2, which contain a broad absorption feature located near 4.62 micron (2165 cm-1), commonly referred to in the literature as the "X-C triple bond N" band. The observed peak positions and widths of the interstellar band agree to within 2.5 cm-1 and 5 cm-1, respectively. The strengths of the interstellar 4.62 micrometers band and the ice absorption features in these spectra are not correlated, which suggests a diversity of environmental conditions for the ices we are observing. We explore several possible carriers of the interstellar band and review possible production pathways through far-ultraviolet photolysis (FUV), ion bombardment of interstellar ice analog mixtures, and acid-base reactions. Good fits to the interstellar spectra are obtained with an organic residue produced through ion bombardment of nitrogen-containing ices or with the OCN- ion produced either through acid-base reactions or FUV photolysis of NH3-containing ices.


Assuntos
Astronomia , Poeira Cósmica/análise , Meio Ambiente Extraterreno , Gelo/análise , Amônia/análise , Fenômenos Astronômicos , Cianatos/análise , Hidrocarbonetos/análise , Nitrilas/análise , Nitrogênio/análise , Fotólise , Silanos/análise , Espectrofotometria Infravermelho , Análise Espectral , Tiocianatos/análise , Raios Ultravioleta
5.
Astrophys J ; 507(1 Pt 1): 281-6, 1998 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-11542820

RESUMO

A new 2.8-3.8 micrometers spectrum of the carbon-rich protoplanetary nebula CRL 618 confirms the previous detection of a circumstellar 3.4 micrometers absorption feature in this object (Lequeux & Jourdain de Muizon). The high resolution and high signal-to-noise ratio of our spectrum allow us to derive the detailed profile of this absorption feature, which is very similar to that observed in the spectrum of the Galactic center and also resembles the strong 3.4 micrometers emission feature in some post-asymptotic giant branch stars. A weak 3.3 micrometers unidentified infrared band, marginally detected in the CRL 618 spectrum of Lequeux & Jourdain de Muizon, is present in our spectrum. The existence of the 3.4 micrometers feature implies the presence of relatively short-chained, aliphatic hydrocarbon materials (-CH2-/-CH3 approximately = 2-2.5) in the circumstellar environment around CRL 618. It also implies that the carriers of the interstellar 3.4 micrometers feature are produced at least in part in circumstellar material, and it calls into question whether any are produced by the processing of interstellar ices in dense interstellar clouds, as has been previously proposed. Other features in the spectrum are recombination lines of hydrogen, rotational and vibration-rotation lines of molecular hydrogen, and a broad absorption probably due to a blend of HCN and C2H2 bands.


Assuntos
Poeira Cósmica , Meio Ambiente Extraterreno , Espectroscopia de Luz Próxima ao Infravermelho , Fenômenos Astronômicos , Astronomia , Hidrocarbonetos/análise , Hidrocarbonetos/química , Hidrogênio , Fotólise , Raios Ultravioleta
6.
Astron J ; 115(6): 2509-14, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11542932

RESUMO

In an attempt to better understand the conditions under which molecules condense onto grains in the envelopes of evolved stars, we have searched for the presence of H2O ice in the circumstellar envelopes of several evolved (OH/IR) stars. The sample of stars observed was selected on the basis of mass-loss rates, luminosities, and outflow velocities in order to cover a range of physical conditions that might affect the amount of ice present in stellar envelopes. Despite the clear presence of H2O ice around other, previously observed, evolved stars, our search in six OH/IR stars has resulted in only one clear detection, in OH 26.5 + 0.6, and the tentative detection in one other, OH 26.4-1.9. We provide column densities or upper limits for the amount of ice that is present on the grains around these stars and explore the possibility that there could be a relationship between M* or M*/L* and the H2O ice column density to explain the observations.


Assuntos
Astronomia , Poeira Cósmica/análise , Meio Ambiente Extraterreno , Gelo/análise , Água/análise , Fenômenos Astronômicos , Modelos Teóricos , Análise Espectral
7.
Astrophys J ; 498(2 Pt 1): 716-27, 1998 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11542939

RESUMO

We have obtained CO absorption profiles of several young stellar objects (YSOs), spanning a range of mass and luminosity, in order to investigate their ice mantle composition. We present the first detection of CO toward the class I YSO L1489 IRS in the Taurus dark cloud. In general, the CO profiles for YSOs show evidence for both processed and pristine ices in the same line of sight, strong indirect evidence for CO, is suggested in R CrA IRS 7, L1489 IRS, Elias 18, and GL 961E. Toward other sources (R CrA IRS 1, IRS 2, W33A, NGC 7538 IRS 9, Mon R2 IRS 2) CO is present in (nearly) pure form. We propose an evolutionary scenario to explain the chemical diversity of the icy mantles toward these objects.


Assuntos
Dióxido de Carbono/análise , Monóxido de Carbono/análise , Poeira Cósmica/análise , Meio Ambiente Extraterreno , Gelo/análise , Fenômenos Astronômicos , Astronomia , Dióxido de Carbono/química , Monóxido de Carbono/química , Análise Espectral
8.
Nature ; 388(6637): 45-7, 1997 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-9214500

RESUMO

The satellites Rhea and Dione orbit within the magnetosphere of Saturn, where they are exposed to particle irradiation from trapped ions. A similar situation applies to the galilean moons Europa, Ganymede and Callisto, which reside within Jupiter's radiation belts. All of these satellites have surfaces rich in water ice. Laboratory studies of the interaction of charged-particle radiation with water ice predicted the tenuous oxygen atmospheres recently found on Europa and Ganymede. However, theoretical investigations did not anticipate the trapping of significantly larger quantities of O2 within the surface ice. The accumulation of detectable abundances of O3, produced by the action of ultraviolet or charged-particle radiation on O2, was also not predicted before being observed on Ganymede. Here we report the identification of O3 in spectra of the saturnian satellites Rhea and Dione. The presence of trapped O3 is thus no longer unique to Ganymede, suggesting that special circumstances may not be required for its production.


Assuntos
Ozônio/análise , Saturno , Meio Ambiente Extraterreno , Análise Espectral
10.
Orig Life Evol Biosph ; 27(1-3): 53-78, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9150567

RESUMO

Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational coverage in the 2-30 microns region, of lines of sight which sample dust in both dense and diffuse interstellar clouds, in order to uniquely specify the composition of interstellar organics. This paper reviews the information available from ground-based observations, although currently the Infrared Satellite Observatory is adding to our body of knowledge on this subject by providing more extensive wavelength coverage. The Murchison carbonaceous meteorite has also been used as an analog to the interstellar observations and has revealed a striking similarity between the light hydrocarbons in the meteorite and the ISM; therefore this review includes comparisons with the meteoritic analog as well as with relevant laboratory residues. Fundamental to the evolution of the biogenic molecules, to the process of planetary system formation, and perhaps to the origin of life, is the connection between the organic material found in the interstellar medium and that incorporated in the most primitive solar system bodies.


Assuntos
Astronomia , Química Orgânica , Meio Ambiente Extraterreno , Hidrocarbonetos/análise , Origem da Vida , Astronomia/métodos , Gelo , Fenômenos de Química Orgânica , Fotólise , Raios Ultravioleta
11.
Icarus ; 124(2): 625-31, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11539388

RESUMO

We have measured the spectrum of Titan near 5 micrometers and have found it to be dominated by absorption from the carbon monoxide 1-0 vibration-rotation band. The position of the band edge allows us to constrain the abundance of CO in the atmosphere and/or the location of the reflecting layer in the atmosphere. In the most likely case, 5 micrometers radiation is reflected from the surface and the mole fraction of CO in the atmosphere is qCO=10(+10/-5) ppm, significantly lower than previous estimates for tropospheric CO. The albedo of the reflecting layer is approximately 0.07(+0.02/-0.01) in the 5 micrometers continuum outside the CO band. The 5 micrometers albedo is consistent with a surface of mixed ice and silicates similar to the icy Galilean satellites. Organic solids formed in simulated Titan conditions can also produce similar albedos at 5 micrometers.


Assuntos
Astronomia , Atmosfera/análise , Monóxido de Carbono , Saturno , Fenômenos Astronômicos , Meio Ambiente Extraterreno , Fotometria , Análise Espectral
12.
Astrophys J ; 440(2 Pt 1): 697-705, 1995 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-11538444

RESUMO

The infrared absorption feature near 2950 cm-1 (3.4 micrometers), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups m-3 and about 2 to 5 -CH2- groups m-3. These densities are consistent with the strengths of the 2955 and 2925 cm-1 (3.38 and 3.42 micrometers) subfeatures (due to -CH3 and -CH2- groups, respectively) within the overall 2950 cm-1 (3.4 micrometers) band being described by the relations A upsilon/tau(2955 cm-1) = 270 +/- 40 and A upsilon/tau(2925 cm-1) = 250 +/- 40 in the local diffuse ISM.


Assuntos
Astronomia , Poeira/análise , Meio Ambiente Extraterreno , Hidrocarbonetos/química , Modelos Teóricos , Fenômenos Astronômicos , Matemática , Silicatos/química , Espectrofotometria Infravermelho
13.
Planet Space Sci ; 43(10-11): 1359-64, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-11540309

RESUMO

Spectra of objects which lie along several lines of sight through the diffuse interstellar medium (DISM) reveal an absorption feature near 3.4 micrometers, which has been attributed to saturated aliphatic hydrocarbons on interstellar grains. The similarity of the absorption bands near 3.4 micrometers (2950 cm-1) along different lines of sight indicates that the carrier of this band lies in the diffuse dust. Several materials have been proposed as "fits" to the 3.4 micrometers feature over the years. A comparison of these identifications is presented. These comparisons illustrate the need for high resolution, high signal-to-noise observational data as a means of distinguishing between laboratory organics as matches to the interstellar material. Although any material containing hydrocarbons will produce features in the 3.4 micrometers region, the proposed "matches" to the DISM do differ in detail. These differences may help in the analyses of the chemical composition and physical processes which led to the production of the DISM organics, although ISO Observations through the 5-8 micrometers spectral region are essential for a definitive identification. A remarkable similarity between the spectrum of the diffuse dust and an organic extract from the Murchison meteorite suggests that some of the interstellar organic material may be preserved in primitive solar system bodies. The 3.4 micrometers absorption feature (in the rest frame) has recently been detected in external galaxies, indicating the widespread availability of organic material for incorporation into planetary systems.


Assuntos
Poeira Cósmica/análise , Meio Ambiente Extraterreno , Hidrocarbonetos/análise , Meteoroides , Astronomia/métodos , Exobiologia , Fotólise
14.
Astrophys J ; 349(1): 107-19, 1990 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-11538693

RESUMO

We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.


Assuntos
Poeira/análise , Meio Ambiente Extraterreno , Raios Infravermelhos , Modelos Teóricos , Fenômenos Astronômicos , Astronomia , Grafite/análise , Gelo/análise , Matemática , Tamanho da Partícula , Espalhamento de Radiação , Silicatos/análise , Espectrofotometria Infravermelho , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...